
TCP Throughput and Buffer Management

Todd Lizambri, Fernando Duran, and Shukri Wakid
National Institute of Standards and Technology
Building 222, Room A353, 100 Bureau Drive

Gaithersburg, MD 20899-3207, U.S.A.
(301) 975-8074 (Voice), (301) 975-8254 (FAX)

E-mail: {todd.lizambri, fernando.duran, shukri.wakid}@nist.gov

Abstract
There have been many debates about the feasibility of
providing guaranteed Quality of Service (QoS) when
network traffic travels beyond the enterprise domain and
into the vast unknown of the Internet. Many mechanisms
have been proposed to bring QoS to TCP/IP and the Internet
(RSVP, DiffServ, 802.1p). However, until these techniques
and the equipment to support them become ubiquitous, most
enterprises will rely on local prioritization of the traffic to
obtain the best performance for mission critical and time
sensitive applications. This work explores prioritizing
critical TCP/IP traffic using a multi-queue buffer
management strategy that becomes biased against random
low priority flows and remains biased while congestion
exists in the network. This biasing implies a degree of
unfairness but proves to be more advantageous to the
overall throughput of the network than strategies that
attempt to be fair. Only two classes of services are
considered where TCP connections are assigned to these
classes and mapped to two underlying queues with round
robin scheduling and shared memory. In addition to
improving the throughput, cell losses are minimized for the
class of service (queue) with the higher priority.

1. Introduction

The most effective way to design Internet routers is to
understand the performance behavior of TCP flows, thus
enabling the management of multiple parallel connections
that share common resources such as memory. Such
connection management can be provided via a peer level (or
even an application like) software that interfaces with TCP
services or it can be provided via intelligence in the
underlying buffer management scheme.

As has been obvious through numerous publications by
the Internet community, the TCP performance behavior has
two aspects to it; protocol design and implementation.

Inherent protocol design mechanisms such as flow control
with the slow window start, the FIFO reception of the
acknowledgements and related delay, the connection
management and retransmissions during packet losses have
been well known problems. The impact of implementation
aspects on TCP performance, however, can be even more
significant. Packet discard policies, buffer management and
scheduling, congestion control, and packet processing time
have been shown to make a significant impact on
performance [1,2,3].

In principle, one would like to be able to manage the
various TCP connections independently while honoring
some quality of service for each. However, this is not only a
very complex problem, but it can hardly be practical
considering current operating system designs and typical
machine/network resources. To overcome these problems,
we propose a buffer management scheme that provides
maximum throughput for the high priority traffic while
eliminating exponential degradation of low priority traffic.
We consider only two types of TCP services, one of which
has a priority edge and is designed for greater effective
throughput by minimizing packet loss and retransmission of
data. In this context, we map these two types to two
logically separate underlying queues and strive to maximize
the throughput of TCP. Since we are studying the behavior
of the end systems, we only concentrate on ABR and UBR
like services rather than emphasizing the various possible
ATM qualities of service [4]. This paper focuses only on the
effects of end system buffering and scheduling of TCP/IP
traffic over ATM networks and does not consider other
related system effects, such as, overall network congestion
and switch and destination flow control for ABR services.

This paper has been organized as follows: Section 2
describes the simulation environment that was used for our
experimentation. In Section 3, we describe the admission
control and cell discard policy used in the traffic shaper.
Section 4 presents the results for the admission control
policy and how the throughputs of the high and low priority
queues are affected. Section 5 provides our conclusions.

2. Simulation

We simulate TCP/IP over an ATM configuration where
10 active 60 Mb/s connections are competing over an OC-31

physical medium (see Figure 1). This stressful condition
allows us to exacerbate the known TCP performance
problems and examine those policies that would permit a
steady state throughput even under such conditions. TCP
throughput is defined here as the number of acknowledged
bytes per unit time. Retransmissions due to non-delivered
packets are not counted in this computation. Each simulation
was run for a 10-second duration and consisted of 10
sending applications with an infinite amount of data to send
and 10 receiving applications that did not send data (except
for acknowledgements). The connection start times were
staggered at different intervals with times of 0 ms, 0.05 ms,
and 0.5 ms respectively. We also assume a receiver window
size of 32 K bytes and a maximum MAC layer segment of
1460 bytes (Ethernet payload size minus TCP/IP headers). A
MAC layer shared buffer capacity of 3000 cells is used.
These assumptions are realistic and are based on our
experience with running and validating the ATM simulator
[2].

Figure 1. Simulation configuration

3. Admission Control Policy

The two queues (Q1, Q2) use shared memory where at
some high utilization (say 80 %), the high priority queue
(Q1) is ONLY allowed “ownership” of the available
memory space [5]. At this high utilization threshold, Q2 will
deactivate one of its connections and keep track of its
identification (ID). As the available memory space decreases
beyond the threshold in certain increments of time, Q2 will
deactivate more of its connections (for other thresholds) and

1 Optical Carrier 3 at 155 Mb/s

keep track of their identifications. This of course can go on
until Q2 deactivates all of its connections in a worst case
scenario. However, if the available memory lingers around
the first threshold (80%), the first connection that was
deactivated will get a high activation priority through a
fairness mechanism. This is called flow biasing. All
flows/connections in Q1 are biased against those of Q2.
However, within Q2, the flows that are deactivated first will
get an activation edge when available memory is above the
configured threshold. This policy, of course, guarantees a
better quality of service for Q1. However, to optimize TCP
throughput, we also invoke a packet discard policy for Q2.
When one cell is discarded in a connection that was
deactivated in Q2, the remaining cells for the TCP packet,
for which such cell belongs to, are also discarded. This
strategy, know as Partial Packet Discard (PPD), is looked at
in detail in [6]. The pseudo code for the admission control
and flow biasing can be found in Figure 2.

Figure 2. Admission control and flow biasing
pseudo code

4. Results

We extended a NIST ATM simulator [7] to incorporate
buffer management techniques, traffic shaping algorithms,
and TCP/IP protocols. The significant use of this simulator
by the international ATM community and the
comprehensive testing & debugging that we performed on its
expanded features make us comfortable with its validity.

 We use flow invocation sequences shown in Table 1 for
10 connections, 5 of which are assigned to each queue.

FOR EACH INCOMING CELL
 IF CELL SERVICE CLASS = LOW PRIORITY THEN
 IF AVAILABLE_MEMORY < BIAS_THRESHOLD[FLOW] THEN

-DISCARD CELL
-ENTER PARTIAL PACKET DISCARD MODE FOR COMPLETE PACKET
IF FLOW IS ACTIVE THEN
 -DEACTIVATE FLOW: DROPPING CELLS FOR FLOW
 UNTIL AVAILABLE_MEMORY > BIAS_THRESHOLD[FLOW]
ELSE FLOW IS ALREADY DEACTIVATED
 -DECREASE BIAS_THRESHOLD[FLOW] TO INCREASE
 PROBABILITY OF REACTIVATION
END IF
ELSE AVAILABLE_MEMORY > BIAS_THRESHOLD[FLOW] THEN
 -RE-ACTIVATE FLOW: ACCEPT CELLS STARTING WITH NEXT
 COMPLETE PACKET
END IF

 ELSE IF SERVICE CLASS = HIGH PRIORITY THEN
 IF AVAILABLE_MEMORY = 0 & LOW PRIORITY CELLS EXIST

-REMOVE LOW PRIORITY CELL FROM MEMORY
-DEACTIVATE FLOW: DROPPING ALL CELLS FOR FLOW UNTIL
 AVAILABLE_MEMORY > BIAS_THRESHOLD[FLOW]
-ACCEPT THE HIGH PRIORITY CELL

 ELSE IF AVAILABLE_MEMORY = 0 & LOW PRIORITY CELLS DO NOT
EXIST

-DISCARD HIGH PRIORITY CELL
-ENTER PARTIAL PACKET DISCARD MODE FOR COMPLETE PACKET

 ELSE AVAILABLE_MEMORY > 0
-ACCEPT CELL

 END IF
 END IF

END FOR

ATM
Network

Q1
Q2 OC-3

S1

S2 R2

R1

S1 = High Priority Sender
S2 = Low Priority Sender
R1 = High Priority Receiver

Table 1. Total TCP throughput and cell loss
Start
Time

∆t
(ms)

Buffer
Management
Policy

Q1
Through-

put
(Mb/s)

Q2
Through-

put
(Mb/s)

Total
Through-

put
(Mb/s)

Cell
Loss
Q1/Q2

0
No Flow Bias
Flow Bias 80%
Flow Bias 90%
Flow Bias 95%

75.92
90.96
90.96
90.96

30.62
10.04
10.09
21.52

106.54
101.00
101.05
112.48

43/4211
0/6800
0/6555
0/5520

0.05
No Flow Bias
Flow Bias 80%
Flow Bias 90%
Flow Bias 95%

83.52
90.99
90.96
91.07

30.20
13.26
16.70
30.15

113.72
104.25
107.66
121.22

46/4438
0/6962
0/6497
0/4578

5
No Flow Bias
Flow Bias 80%
Flow Bias 90%
Flow Bias 95%

83.49
90.81
90.81
90.70

22.47
12.79
11.22
11.61

105.96
103.60
102.03
102.31

50/5163
0/6142
0/4637
0/6451

The “Start Time” left column of this table provides the
various units of time at which flow invocations were
triggered. For time intervals of 0 ms, all the 10 flows were
invoked at the same time, while for time interval of 0.05 ms,
each flow started 0.05 ms after the previous one. The
“Buffer Management Policy” column uses various profiles
of Partial Packet Delays (PDD) together with different buffer
availability thresholds to invoke flow biasing. Then the
corresponding Q1, Q2 and total throughputs are provided
with the related cell losses in the remaining columns. Out of
a numerous set of experiments, we selected those thresholds
and attributes that provide a better quality of service and
optimal TCP throughput. At time interval of 0 ms, where all
the connections are simultaneously active, the tail-dropping
packet strategy combined with the simultaneous burst of data
causes synchronization of TCP windows thus leading to a
slightly poorer performance than that obtained by 0.05 ms
and 0.5 ms intervals. It is important to note that during this
simulation we used a mean packet-processing overhead of
300 µs (with a standard deviation of 15 µs) [1,3]. This is a
realistic value we have obtained using reliable measurements
at NIST and considering the limitations of the simulator that
would not allow different processing times for sending,
receiving, and acknowledging data [1]. Since TCP
throughput is quite sensitive to such an overhead [3], the
data in Table 1 is quite realistic and shows an average
greater than 10 Mb/s throughput per connection. As shown
in [1], the throughput bound due to processing time can be
calculated as the amount of data divided by the processing
time elements, but ignoring transmission time.

 Amount of Data Sent
 Max Throughput =
 Processing Delays

 1460 bytes/packet x 8 bits/byte
 =

 ~600x10-6 seconds / packet

 = ~19.5 Mb/s

For our simulation, the combined processing time is
approximately 600 µs, which yields a maximum throughput
of 19.5 Mb/s per connection. Since each queue is fed by 5
TCP connections, the maximum throughput per queue is

approximately 97.5 Mb/s (the deviation in processing time
may cause this number to vary slightly). Berkley’s System
V Release 4.0 with Reno was used for the TCP/IP stack.
Selective acknowledgement logic (SACK) was not used. For
all simulation runs, the receiver window size was 32K bytes
and the maximum segment size was 1460 bytes (sized for
Ethernet frames). The amount of memory allocated to the
queuing was 3000 cells. This memory was shared between
Q1 and Q2 based on the flow biasing algorithm. The output
link of the traffic shaper was fixed at 155 Mb/s.

Figures 3 to 6 display the effective throughput for Q1 and
Q2 with varying values of flow biasing from the simulation
runs that have a staggered flow start time of 0.05 ms (see
row 2 of Table 1). Figure 3 shows a baseline without the
flow biasing. In this figure, both queues incur cell loss and
Q1 does not achieve maximum throughput. The variance of
throughput in Q2 (including periods of no transmission)
occur when cells are lost and a flow halts transmission for
the duration of the TCP retransmission timeout. One can
visually determine the number of flows biased (or halting
transmission) during a given period of time. With flow
biasing (Figures 4 to 6), maximum throughput is achieved in
Q1. The varying threshold of memory usage to determine
when biasing should occur affects the throughput of the Q2.

Our goal was to eliminate the cell loss and achieve
maximum throughout in the high priority queue (Q1) while
maximizing the throughput in Q2. The constant steady TCP
throughput of about a 91 Mb/s in Q1 under total input stress
conditions of 600 Mb/s while maintaining a throughput of
30.15 Mb/s in Q2 simply shows the value of the above
policy when biasing occurs at 95% memory utilization.

Figure 3. TCP Effective Throughput vs. Time with
Shared Buffer Space & No Flow Biasing

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

5. Conclusions

We presented here a policy that prevents TCP from the
known exponential degradation of throughput under stressful
conditions. Such policy enables a steady overall two-thirds
effective utilization of the ideal and inherent available
bandwidth in the physical medium, while achieving
maximum theoretical throughput in the high-priority queue.
We also, and in parallel, provide a means for minimizing
packet loss for a subset class of services.

References

[1] Y. Fouquet, A. Mink, and S. Wakid, “Hardware Measurement
Techniques for High Speed Networks”, Journal of High Speed
Networks, vol. 3, no. 2, p 187, 1994.

[2] T. Lizambri, F. Duran, and S. Wakid, “Priority Scheduling and
Buffer Management for ATM Traffic Shaping”, Proceedings of the
7th IEEE Workshop on Future Trends of Distributed Computing
Systems, FTDCS 99.

[3] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An
Analysis of TCP Processing Overhead”, IEEE Communications
Magazine, June 1989.

[4] ATM Forum, "ATM Traffic Management Specification Version
4.0" April 1996,
ftp://ftp.atmforum.com/pub/aproved-specs/af-tm-
0056.000.ps

[5] G.Wu, J.Mark, “A Buffer Allocation Scheme for ATM
Networks: Complete Sharing Based on Virtual Partition”,
IEEE/ACM Transactions on Networking Vol. 3, Num. 6, Dec 95.

[6] A. Romanow and S. Floyd, “Dynamics of TCP Traffic over
ATM Networks”, IEEE Journal on Selected Areas in
Communications, vol. 13, no. 4 (May 1995), 633-641.

[7] NIST ATM simulator,
http://www.hsnt.nist.gov/misc/hsnt/prd_atm-sim.html

Acronyms

ABR: Available Bit Rate
ATM: Asynchronous Transfer Mode
FIFO: First In First Out queue
IP: Internet Protocol
MAC: Medium Access Control
NIST: National Institute of Standards & Technology
OC-3: Optical Carrier-3
PDD: Partial Packet Discard
RSVP: ReSerVation Protocol
TCP: Transmission Control Protocol
UBR: Unspecified Bit Rate

Figure 5. TCP Effective Throughput vs. Time with
Flow Biasing when Shared Buffer is 90% Full

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

Figure 4. TCP Effective Throughput vs. Time with
Flow Biasing when Shared Buffer is 80% Full

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

Figure 6. TCP Effective Throughput vs. Time with
Flow Biasing when Shared Buffer is 95% Full

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

